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Abstract
We study a class of solvable Hamiltonians H which have strongly broken
potential group structure. However, the scattering matrices of the systems
under consideration are also related to the intertwining operator of SO(2, 1).

PACS numbers: 03.65.Fd, 02.20.Sv, 03.65.Nk

1. Introduction

Since the advent of quantum mechanics it has been obvious that algebraic structures play a
fundamental role in quantum theory. Indeed, the first quantum study of the hydrogen atom [1]
was based upon the algebra generated by angular momentum and the Runge–Lenz vector. The
prescription of this invariance algebra, which is isomorphic to the so(4) Lie algebra, allows a
determination of the energy spectrum of the bound states of the hydrogen atom. Since then,
invariance algebras have been determined for many quantum mechanical systems. This is
a situation in which the Hamiltonian H of the system is expressed in terms of the Casimir
operator C of some algebra g, i.e. H = f (C). For example, in the hydrogen bound-state
problem, H = α/(C − 1), where C is the second-order Casimir operator of so(4).

Since the work of Zwanzinger [2] it has become clear that an algebraic approach can
be successfully applied to the solution of scattering problems. Important results have been
obtained in this way by the Yale group and others [3–11]. To extend the algebraic approach to
other scattering systems, another kind of algebraic structure, the so-called potential algebra,
was suggested in [3]; the Hamiltonians of the one-dimensional systems are related to the
Casimir operator C of the noncompact algebra g as

H = f (C)|H (1.1)

where H are one-dimensional subspaces of the carrier space. (As usual, H is linear on C and
H are the eigensubspaces of the compact generators). Hence, the potential algebra describes
fixed energy states of a family of one-dimensional systems with different potential strength.
The next step was taken by Frank and Wolf [4] (see also [5]), who utilized the potential algebra
so(2, 1) to construct the S matrix for the Pöschl–Teller potential [12]. However, the method
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suggested there used an explicit coordinate realization. Subsequently, following the ideas of
[4] Alhassid et al [6] suggested a purely algebraic description of the S-matrix associated with
so(2, 1) algebra. It appears that [6–9] knowledge of the interrelation between an algebra,which
describes the dynamics of the scattering system, and an Euclidean algebra, which describes
the asymptotic properties of the system, allows in principle, pure algebraic calculation of
S-matrices. This technique, which is called the Euclidean connection, essentially uses the
theory of group deformations [13].

At this point we mention that the approach presented in [3–7] is similar to the Olshanetsky–
Perelomov approach [14] to quantum integrable systems related to Lie algebras (where
the Hamiltonians of the systems are described in terms of the radial part of the Casimir
operator). Therefore, one may, in principle, extend the method of algebraic evaluation of the
scattering matrix to many-body scattering problems related to (higher real-rank) Lie algebras.
Unfortunately the theory of group deformations has not yet been developed as far as one would
wish; there exist a number of results about most degenerate representations of some higher real-
rank algebras (see, e.g., [9] and the references cited therein). Therefore, it is rather difficult to
derive the S-matrix for the many-body scattering problems using the above-mentioned method.

It should be noted that the potential group approach initiated in [3] is a rediscovery of a
technique attributable to Ghirardi [15] (see equation (3.2) of [15]). In that paper Ghirardi also
proposed an algebraic method in which the Hamiltonians H of the systems are related to the
Casimir operator C of so(2, 1) as

Q(x)(H − E) = [C − j (j + 1)]|H (1.2)

where j specifies the discrete series representations of so(2, 1) and H is an eigensubspace of
the compact generator. (Observe, at Q(x) = const we consider models with potential group
structure.)

Since knowledge of invariance algebra is sufficient for solving the bound-state problems,
it is quite suggestive to ask whether or not one can use information on the invariance algebra
directly to determine the scattering matrices completely. The answer is in the affirmative
[16]. It has been discovered that S-matrices for systems under consideration are related to
the intertwining operators between the Weyl equivalent principal series representations of the
invariance algebra g. Namely, the S-matrix is constrained to satisfy

S dUχ(X) = dUχ̃(X)S for all X ∈ g (1.3)

or

SUχ(g) = Uχ̃(g)S for all g ∈ G (1.4)

where dUχ and dUχ̃ are the Weyl equivalent principal series representations of g while Uχ

and Uχ̃ are the corresponding representations of the group G with g. Equations (1.3) and
(1.4) have great restrictive power, determining the S-matrix up to a constant. Thus, one can
in principle evaluate the S-matrix from (1.3) or (1.4) without writing a Schrödinger equation,
or wavefunctions, or mentioning the concepts of space and time. We note that the operator S
with property (1.3) (or (1.4)) is called an intertwining operator [17] between dUχ and dUχ̃

(Uχ and Uχ̃ ).
Moreover, it follows from equation (1.3) or (1.4) that if the matrix of the representation

operator is diagonal in some basis then the matrix of the intertwining operator is also diagonal.
This fact leads to the suggestion that there might exist a class of one-dimensional potentials for
which the scattering matrix is determined by diagonal elements of the intertwining operator.
This is exactly what happens in the algebraic approaches presented in [3–7, 10, 13]. Thus,
the number of subgroup chains provided by the representation theory necessarily corresponds
to the number of classes of quantum systems. Therefore the problem of classification of all
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one-dimensional systems related to group G may be reduced to the more tractable problem of
enumeration of all subgroup chains of G. Moreover, one can use the well-developed theory of
intertwining operators for semi-simple Lie groups [18] to obtain a stringent restriction upon
the structure of the scattering matrices for many-body systems associated with semi-simple
Lie algebras, or even to determine it completely [19].

In a previous paper [20], we discussed the scattering problems related to SO(2, 1). It has
been shown that the scattering problem can be completely solved within the framework of
group theory, without explicit knowledge of the interaction potentials. It has also been shown
that according to SO(2, 1) ⊃ SO(2), SO(2, 1) ⊃ SO(1, 1) and SO(2, 1) ⊃ E(1) subgroup
reductions one has three classes of one-dimensional scattering problems related to SO(2, 1).
The S-matrix for such systems is given by

(i) Class 1 (related to SO(2, 1) ⊃ SO(2) reduction)

Sm = c(ρ)
�

(
1
2 − iρ + m

)
�

(
1
2 + iρ + m

) (1.5)

(ii) Class 2 (related to SO(2, 1) ⊃ SO(1, 1) reduction)

Sν =
(

Rν Tν

Tν Rν

)
(1.6)

where

Rν = c(ρ) cosh(πν)�

(
1

2
− iρ + iν

)
�

(
1

2
− iρ − iν

)
Tν = −ic(ρ)

1

π
sinh(πρ)�

(
1

2
− iρ + iν

)
�

(
1

2
− iρ − iν

)
(iii) Class 3 (related to SO(2, 1) ⊃ E(1) reduction)

Sλ = c(ρ)|λ|−2 iρ (1.7)

where c(ρ) is an arbitrary phase factor; ρ, m, ν and λ specify the irreducible representations
of SO(2, 1), SO(2), SO(1, 1) and E(1), respectively.

Following the ideas of Ghirardi one can propose one-dimensional scattering systems
whose Hamiltonians are related to the Casimir operator C of SO(2, 1) as

Q(x)(H − E) = [C − j (j + 1)]|H j = − 1
2 − iρ (1.8)

where H are the one-dimensional subspaces of the carrier space occurring in the above-
mentioned subgroup reductions. It is clear that the scattering matrices for such systems are
also given by formulae (1.5)–(1.7). However, in this case all parameters ρ2,m2, ν2 and λ2 are
linear functions of the energy E. (It should be stressed that for models with potential group
structure the quantum number ρ is related to the energy, while m, ν and λ are taken to be
independent of energy; the energy dependence of ρ is determined by the relation connecting
H and C.)

The question that arises, then, is: what are the interaction potentials for which relation
(1.8) holds? In a previous paper we gave the simple example of how the problem for systems
with the SO(2, 1) potential group structure can be solved within the framework of group
theory. Here we show that the solution of the problem in the case of models with algebraic
structure proposed in (1.8) is also possible within this framework.
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2. Solvable potentials related to SO(2, 1)

We want to deal with single particle scattering by one-dimensional potentials related to the
principal series of SO(2, 1) in the sense that relation (1.8) holds. To this end, a few facts from
the representation theory of the SO(2, 1) are useful.

Let R2,1 be a three-dimensional pseudo-Euclidean space with bilinear form

[ξ, η] = ξ0η0 − ξ1η1 − ξ2η2. (2.1)

By SO(2, 1) we denote the connected component of the group of linear transformations of
R2,1 preserving the form (2.1). We consider SO(2, 1) as acting on R2,1 on the right. In
accordance with this we shall write the vector in the row form ξ = (ξ0, ξ1, ξ2). The unitary
irreducible representations (UIRs) of SO(2, 1) are known to form three series [21]: principal,
supplementary and discrete. Since we want to deal with particle scattering, the relevant unitary
representations will be the principal series and we restrict the discussion to it.

The principal series of SO(2, 1) are labelled by ρ, with 0 � ρ < ∞. The representations
specified by labels ρ and −ρ are Weyl equivalent. The generators of the representation of
the Lie algebra of SO(2, 1) associated with the principal series are denoted by Ji , i = 0, 1, 2,
where J0 is the generator corresponding to the rotations in the 1–2 plane

g0 (t) =
1 0 0

0 cos t − sin t

0 sin t cos t

 (2.2)

while J1 and J2 are the generators corresponding to the pure Lorentz transformations along
the 1 and 2 axes, respectively

g1(t) =
cosh t sinh t 0

sinh t cosh t 0
0 0 1

 g2(t) =
cosh t 0 sinh t

0 1 0
sinh t 0 cosh t

 . (2.3)

Ji are the Hermitian operators and satisfy the commutation relations

[J1, J2]− = −iJ0 [J2, J0]− = iJ1 [J0, J1]− = iJ2. (2.4)

The operator J0 is elliptic, while J1 and J2 are hyperbolic. The Casimir operator

C = J 2
0 − J 2

1 − J 2
2 (2.5)

is identically a multiple of the unit C = − 1
4 − ρ2.

As is well known, the group SO(2, 1) has three subgroups SO(2), SO(1, 1) and E(1),
where E(1) (being isomorphic to the Euclidean group in one-dimension) consists of matrices
of the form

n(t) =
1 + t2/2 −t2/2 t

t2/2 1 − t2/2 t

t −t 1

 . (2.6)

Hence, we are interested in the principal series of SO(2, 1) in SO(2), SO(1, 1) and E(1) bases
in which the operators J0, J1 and N = J0 − J2 are diagonal, respectively.

We now return to our main theme. We want to construct the Hamiltonians for which
relation (1.8) holds. The key to their construction lies in the observation that the Schrödinger
energy eigenvalue equation for such systems is nothing but the condition imposed on the carrier
space of SO(2, 1) to be irreducible. Thus in order to find the Hamiltonians for the systems
under consideration we should look for a reducible representation of SO(2, 1) containing the
UIR of the principal series.
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Let us consider a quasiregular representation of SO(2, 1) induced by a one-dimensional
identity representation of SO(2) [21]. We note that this representation is decomposed into the
direct integral of principal series representations. Hence, the principal series representations
can be realized as a subrepresentation of the quasiregular one.

The quasiregular representation can be realized in the Hilbert space L2 (
, dµ) of square-
integrable functions on an upper sheet of hyperboloid 
 = SO(2, 1)/SO(2)

ξ2
0 − ξ2

1 − ξ2
2 = 1 ξ0 > 0. (2.7)

Generally, for the construction of the quasiregular representation one can use the carrier space
L2(
, dµ) with any quasi-invariant measure dµ(ξ) on 
. The representation is given by [21]

T (g)f (ξ) = (dµ(ξg)/dµ(ξ))1/2f (ξg) (2.8)

with inner product

(f, f ′) =
∫

f (ξ)f ′(ξ) dµ(ξ) (2.9)

where dµ(ξg)/dµ(ξ) is the Radon–Nikodym derivative. The representations with different
measure are unitarily equivalent.

In the case of dµ(ξ) = dξ , where dξ ≡ dξ1 dξ2/ξ0 is an invariant measure on 
, the
Radon–Nikodym derivative equals 1 and the representation, called Ť , has the simple form

Ť (g)f̌ (ξ) = f̌ (ξg) (2.10)

with inner product

(f̌ , f̌ ′) =
∫

f̌ (ξ)f̌ ′(ξ) dξ. (2.11)

We are now prepared to construct the principal series of SO(2, 1) as a subrepresentation
of T. To do this, we require the representation space to be irreducible. Such a restriction is
obtained if all functions f are eigenfunctions of the Casimir operator C = J 2

0 − J 2
1 − J 2

2 of T

Cf = j (j + 1)f j = − 1
2 − iρ (2.12)

where Jk are infinitesimal operators of the representation (2.8)

Jk = i
d

dt
T (gk(t))|t=0 k = 0, 1, 2. (2.13)

Next, imposing the reduction condition, one can choose a different basis in the carrier space.
As mentioned above, the quasiregular representations with different measure are

unitarily equivalent. Although the representations with different measure are mathematically
equivalent, they may be related to different physical problems. For this reason, we shall
consider the quasiregular representation with different measure.

2.1. A class of potentials related to SO(2, 1) ⊃ SO(2)

According to this we want dµ to be invariant under SO(2). We can, without loss of generality,
put dµ(ξ) = v(ξ0) dξ where dξ is the invariant measure on 
. The requirement that the
measure is quasi-invariant implies only the condition

v(ξ0) � 0. (2.14)

Such defined quasiregular representation, called T, of course, is unitarily equivalent to Ť . The
unitary mapping W which realizes the equivalence is given by

W : f −→ f̌ = v1/2f. (2.15)
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In this case, the generators and the Casimir operator, denoted as J1, J2, J0 and C, are
given by

J0 = iξ2
∂

∂ξ1
− iξ1

∂

∂ξ2
J1 = iξ0

∂

∂ξ1
+

iξ0

2v

∂v

∂ξ1
J2 = iξ0

∂

∂ξ2
+

iξ0ξ2

2ξ1v

∂v

∂ξ1

and

C = ∂2

∂ξ2
1

+
∂2

∂ξ2
2

+

(
ξ2

0

ξ1v

∂v

∂ξ1
+ 1 + �

)
�

+
ξ2

0

(
ξ2

0 − 1
)

4v

[
1

ξ1ξ2

∂2v

∂ξ1∂ξ2
− 1

ξ2
1 v

(
∂v

∂ξ1

)2

− 2
(
1 − 3ξ2

0

)
ξ1ξ

2
0

(
ξ2

0 − 1
) ∂v

∂ξ1

]
with

� = ξ1
∂

∂ξ1
+ ξ2

∂

∂ξ2

where we have used
∂v

∂ξ2
= ξ2

ξ1

∂v

∂ξ1
. (2.16)

(We are taking ξ1 and ξ2 as the independent variables on 
.)
Since J0 is sought to be diagonal, we introduce in the place of ξ1, ξ2 the variables x, ϕ via

ξ1 = 2
√

z(x)

1 − z(x)
cos ϕ ξ2 = 2

√
z(x)

1 − z(x)
sin ϕ (2.17)

with 0 � ϕ < 2π, 0 � x < ∞, where z is a differentiable function on R+ with values in
[0, 1]. So J0 becomes the operator −i ∂

∂ϕ
, while

C = z(1 − z)2

ż2

{
∂2

∂x2
+

(
v̇

v
− z̈

ż
+

ż

z

)
∂

∂x
+

ż2

4z2

∂2

∂ϕ2
+

1

2v

[
v̈ − v̇2

2v
−

(
z̈

ż
− ż

z

)
v̇

]}
(2.18)

where dots represent derivatives with respect to x, i.e. ż = dz/dx, z̈ = d2z/dx2, etc. In order
to eliminate the term containing the first derivative we require

v̇

v
− z̈

ż
+

ż

z
= 0. (2.19)

Hence we have that up to a common factor

v = żz−1. (2.20)

Since v must be positive we require that ż > 0. Substituting equation (2.20) into
equation (2.18), one gets

C = z(1 − z)2

ż2

[
∂2

∂x2
+

1

2

...
z

ż
− 3

4

(
z̈

ż

)2

+
ż2

4z2

(
1 +

∂2

∂ϕ2

)]
. (2.21)

Thus, the principal series of SO(2, 1) in SO(2) basis can be realized in the Hilbert space
spanned by eigenfunctions of C and J0

Cf (1)
m = (− 1

4 − ρ2) f (1)
m J0f

(1)
m = mf (1)

m (2.22)

where J0 = −i ∂
∂ϕ

and C is given by (2.21). Let Hm be a one-dimensional subspace spanned by

f (1)
m with given m. Then the Casimir operator restricted to Hm becomes a differential operator

in x alone; it is found that

Cm = z(1 − z)2

ż2

[
∂2

∂x2
+

1

2

...
z

ż
− 3

4

(
z̈

ż

)2

+
ż2(1 − m2)

4z2

]
(2.23)
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where Cm denotes the restriction of C to Hm. We note that the operator Cm is the Schrödinger
type if

z(1 − z)2

ż2
= 1. (2.24)

The solution to this equation is given by

z = tanh2 x

2
. (2.25)

With this z, the operator Cm is related to the Pöschl–Teller Hamiltonian

Hm = − d2

dx2
+

m2 − 1
4

sinh2 x
(2.26)

as Hm = −(
Cm + 1

4

)
. (We are using units with 2M = h̄ = 1.) Thus, the Pöschl–Teller

Hamiltonian (2.26) has SO(2, 1) as the potential group; the scattering states that have the
same energy but belong to different potential strengths are related to the UIR of the principal
series of SO(2, 1). However, for a class of Hamiltonians relation (1.8) can be satisfied by
the proper choice of m2 and ρ2 as a function of the energy. It is not difficult to see that for
Hamiltonians

H = − d2

dx2
+

h0z
2 + (h1 − 2h0)z + h0 + 1

R
+

z2(1 − z)2

R2

×
(

c0 +
2(c1 − c0)z + 2c0 − c1

z(z − 1)
− 5�

4R

)
(2.27)

where � = c2
1 − 4c0c1, R(z) = c0z

2 + (c1 − 2c0)z + c0 and z (x) satisfies

ż = 2z(1 − z)√
R(z)

the following relation holds(
Cm + ρ2 +

1

4

)
= −z(1 − z)2

ż2
[H − E] (2.28)

provided

1 − m2 = c0E − h0 1 + 4ρ2 = c1E − h1. (2.29)

As a consequence, one finds exactly solvable Hamiltonians (2.27) which have a ‘broken
symmetry’ in the sense that H �= f (C)|Hm

. However, the Hamiltonians (2.27) have another
kind of algebraic structure. It follows from (2.28) that(

C + ρ2 + 1
4

)∣∣
Hm

= Q(x)(H − E)

with m and ρ given by (2.29) and Q(x) = − z(1−z)2

ż2 .
The class of Hamiltonians (2.27) contains as a particular case the Pöschl–Teller

Hamiltonian

H = − d2

dx2
+

h0 + 3
4

sinh2 x

which was already known to possess SO(2, 1) as the potential group. (In this case c0 = 0,
c1 = 4 and h1 = −1.) It is also worth mentioning that the interaction potentials given in
(2.27) belong to a class of Natanzon hypergeometric potentials [17] which depends on six
parameters f , h0, h1, a, c0 and c1 (see also [10, 11, 23]). For the potentials given in (2.27)
a = c0 and f = h0. (In (2.27) we closely following the notation of [17].)
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Thus, the wavefunctions of the restricted class of Natanzon hypergeometric potentials
(which depends on four parameters) are related to the basis functions f (1)

m (ξ), while the
S-matrix is determined by diagonal elements (1.5) of the intertwining matrix. It follows from
(2.15) and (A.7) that

f (1)
m (ξ) =

(
z

ż

) 1
2
∫ 2π

0

(
1 + z

1 − z
− 2

√
z

1 − z
cos(θ − ϕ)

)−1−j

eimθ dθ (2.30)

where j = −1
2 − iρ. Hence for the wavefunctions of the restricted Natanzon potentials given

in (2.27) we have

�(x) ∝ (ż)−
1
2 z

1+m
2 (1 − z)1+j

2F1(1 + j, 1 + j + m; 1 + m; z)

where 2F1 are the standard hypergeometric functions.

2.2. A class of potentials related to SO(2, 1) ⊃ SO(1, 1)

Now we require the quasi-invariant measure dµ to be invariant under the transformations
g1 (t) ∈ SO(1, 1) (see equation (2.3)). According to this, we put dµ = v(ξ2) dξ . (For the sake
of simplicity, we will denote the generators and the Casimir operator by Ji and C, respectively.)
Then

J0 = iξ2
∂

∂ξ1
− iξ1

(
1

2v

∂v

∂ξ2
+

∂

∂ξ2

)
J1 = iξ0

∂

∂ξ1
J2 = iξ0

∂

∂ξ2
+

iξ0

2v

∂v

∂ξ2

and

C = ∂2

∂ξ2
1

+
∂2

∂ξ2
2

+

(
ξ2

v

∂v

∂ξ2
+ 1 + �

)
� +

1

v

∂v

∂ξ2

∂

∂ξ2

+

(
1 + ξ2

2

)
2v

[
∂2v

∂ξ2
2

− 1

2v

(
∂v

∂ξ2

)2

+
2ξ2

1 + ξ2
2

∂v

∂ξ2

]
. (2.31)

In place of ξ1, ξ2 let us introduce the new variables x, β by

ξ1 = sinh β√
1 − z2(x)

ξ2 = z(x)√
1 − z2(x)

(2.32)

with −∞ < β < ∞ and −∞ < x < ∞, where now z is a differentiable function on R with
values in [−1, 1]. Then J1 becomes the operator i ∂

∂β
, while

C = (1 − z2)2

ż2

{
∂2

∂x2
+

(
v̇

v
− z̈

ż
− żz

1 − z2

)
∂

∂x
+

ż2

1 − z2

∂2

∂β2

+
1

2v

[
v̈ − v̇2

2v
−

(
z̈

ż
+

żz

1 − z2

)
v̇

]}
. (2.33)

We now require
v̇

v
− z̈

ż
− żz

1 − z2
= 0

which yields

v = ż(1 − z2)−1/2. (2.34)

Since v must be positive we require that ż > 0. Putting equation (2.34) into equation (2.33),
one gets

C = (1 − z2)2

ż2

[
∂2

∂x2
+

1

2

...
z

ż
− 3

4

(
z̈

ż

)2

+
ż2(2 + z2)

4(1 − z2)2
+

ż2

1 − z2

∂2

∂β2

]
. (2.35)
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The basis functions corresponding to the considered reduction are the eigenfunctions of the
set of operators C and J1

Cf (2)
ντ = (− 1

4 − ρ2) f (2)
ντ J1f

(2)
ντ = νf (2)

ντ

where J1 = i ∂
∂β

and C is given by (2.35).

Denote by Cν a restriction of C on the one-dimensional subspace Hν spanned by f (2)
ντ

with fixed ν and τ . Then

Cν = (1 − z2)2

ż2

[
∂2

∂x2
+

1

2

...
z

ż
− 3

4

(
z̈

ż

)2

+
ż2(2 + z2)

4(1 − z2)2
− ż2ν2

1 − z2

]
. (2.36)

Before proceeding further, note from (2.36) that Cν is the Schrödinger type if

(1 − z2)2

ż2
= 1. (2.37)

Equation (2.37) suggests that z = tanh x. If we compute Cν for this z, it becomes

Cν = d2

dx2
− ν2 + 1

4

cosh2 x
− 1

4
.

Hence the Pöschl–Teller Hamiltonian

Hν = − d2

dx2
+

ν2 + 1
4

cosh2 x

is related to the Casimir operator (2.35) as

Hν = − (
C + 1

4

)∣∣
Hν

.

Let ν2 and ρ2 be a linear function of E. We can, without loss of generality, put

1 + ν2 = a1E + b1 1 + ρ2 = a2E + b2.

Then it is not difficult to see that the systems governed by the Hamiltonians

H = − d2

dx2
+

b1z
2(1 − z2) − 3

4 (1 − z2) − b2z
2 + 1

R

+
z4(1 − z2)2

R2

(
a1 +

a1 + a2(2z2 − 1)

z2(z2 − 1)
− 5�

4R

)
(2.38)

where � = (a1 − a2)
2, are related to SO(2, 1) in the sense that(

Cν + ρ2 +
1

4

)
= − (1 − z2)2

ż2
[H − E]

provided

ż = z(1 − z2)√
R(z)

(2.39)

where R(z) = a1z
4 + (a2 − a1)z

2.
This class of solvable potentials includes as special cases important families of Ginocchio

potentials [19]. Indeed, putting

a1 = 1

γ 4
− 1

γ 2
a2 = 1

γ 4
b2 = 1 b1 = δ(δ + 1) +

3

4

with γ � 1, δ(δ + 1) � 1
4 and introducing Ginocchio’s variable y

y = z√
z2 + γ 2(1 − z2)

(2.40)
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we have

H = − d2

dx2
+ γ 2δ(δ + 1)(1 − y2) +

(1 − y2)(1 − γ 2)

4
[2 − y2(7 − γ 2) + 5(1 − γ 2)y4].

(2.41)

It follows from (2.39) and (2.40) that
dy

dx
= (1 − y2)[1 − (1 − γ 2)y2]. (2.42)

We also mention that if γ = 1 the Hamiltonian in (2.41) simplifies to the Pöschl–Teller
Hamiltonian

V (x) = δ(δ + 1)

cosh2 x

having SO(2, 1) as the potential group.
Among others, this algebraic structure provides an integral representation for the

wavefunctions. By arguments very similar to those used to obtain (2.30), we have from
(A.13), that

�τ(x) = (1 − z2)
1
4√

ż

∫ ∞

−∞

[
cosh α√
1 − z2

− τ
z√

1 − z2

]−1−j

exp(−iνα) dα (2.43)

with j = − 1
2 − iρ and τ = ±1. Hence we have

�τ(x) ∝ (ż)−
1
2 (1 − z2)

2j+3
4

×
{
�

(
j + iν + 1

2

)
�

(
j − iν + 1

2

)
2F1

(
j + iν + 1

2
,
j − iν + 1

2
; 1

2
; z2

)
+ 2τz�

(
j + iν + 2

2

)
�

(
j − iν + 2

2

)
2F1

(
j + iν + 2

2
,
j − iν + 2

2
; 3

2
; z2

)}
.

It should be noted that the potential functions of this class admit a double degeneracy of
the wavefunction for every positive value of energy. (The twofold degeneracy corresponds to
the fact that each UIR of SO(1, 1) is twofold degenerate in principal series of UIR of SO(2, 1).)
Therefore, one may construct wave packets which are partly transmitted and partly reflected
by the potential. The function �−1 represents a wave incident from the left. Reflection occurs
at the potential barrier, but there is also transmission to the right. A similar interpretation of
�+1 can be made. It represents a wave incident from the right, and transmitted through the
barrier to the left. According to (1.6), the reflection and transmission coefficients are

|R|2 = cosh2 πν

cosh2 πν + sinh2 πρ
|T |2 = sinh2 πρ

cosh2 πν + sinh2 πρ
.

2.3. A class of potentials related to SO(2, 1) ⊃ E(1)

We now choose the quasi-invariant measure in (2.8) as dµ = v(ξ+) dξ , with ξ+ = ξ0 + ξ1.
Such a defined measure is invariant under the transformation given by (2.6). If we calculate
the Casimir operator in this realization, we then find

C = ∂2

∂ξ2
1

+
∂2

∂ξ2
2

+

(
ξ0(ξ0 + ξ1)

ξ2v

∂v

∂ξ2
+ 1 + �

)
� +

ξ0

ξ2v

∂v

∂ξ2

∂

∂ξ1

+
ξ2

0 (ξ0 + ξ1)

2ξ2v

[
∂2v

∂ξ1∂ξ2
− (ξ0 + ξ1)

2ξ2v

(
∂v

∂ξ2

)2

+
(2ξ0 + ξ1)

ξ2
0

∂v

∂ξ2

]
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where we have used
∂v

∂ξ1
= ξ+

ξ2

∂v

∂ξ2
.

We want to diagonalize an infinitesimal operator N corresponding to (2.6)

N = i

(
ξ2

∂

∂ξ1
− ξ+

∂

∂ξ2

)
. (2.44)

Hence, the new variables x, β with −∞ < x < ∞, −∞ < β < ∞ are introduced in this way

ξ1 = 1 − z2(x) − β2

2z(x)
ξ2 = β

z(x)
(2.45)

where z is a differentiable function on R with values in R+. Then N = −i ∂
∂β

and

C = z2

ż2

{
∂2

∂x2
+

(
v̇

v
− z̈

ż

)
∂

∂x
+ ż2 ∂2

∂β2
+

1

2v

[
v̈ − v̇2

2v
− z̈

ż
v̇

]}
. (2.46)

Since we want the first derivative to vanish, we require
v̇

v
− z̈

ż
= 0.

We can, without loss of generality, put

v = −ż with ż < 0. (2.47)

(Since v must be positive we require ż < 0.) Substituting equation (2.47) into equation (2.46),
one gets

C = z2

ż2

[
∂2

∂x2
+

1

2

...
z

ż
− 3

4

(
z̈

ż

)2

+ ż2 ∂2

∂β2

]
.

The restriction of C to the subspace Hλ spanned by f
(3)
λ for a given λ yields the differential

operator Cλ

Cλ = z2

ż2

[
∂2

∂x2
+

1

2

...
z

ż
− 3

4

(
z̈

ż

)2

− λ2ż2

]
. (2.48)

Then it is not difficult to see that a class of restricted confluent Natanzon potentials [17]

V (x) = g2z
2 + h0 + 1

R
+

z2

R2

(
−σ2 +

5σ2c0

R

)
(2.49)

which are defined in terms of four parameters h0, c0, g2, σ2 and a function z(x) satisfying

ż = − 2z√
R

where R(z) = σ2z
2 + c0 are related to Cλ as

Cλ + ρ2 +
1

4
= −z2

ż2
(H − E) H = − d2

dx2
+ V (x) (2.50)

provided

4λ2 = g2 − σ2E 1 + 4ρ2 = c0E − h0.

(In (2.49) we closely follow the notation of [17].)
Moreover it follows from (A.17) that

�(x) ∝ (−ż)1/2(z)1+j

∫ ∞

−∞
[z2 + t2]−1−j eiλt dt (2.51)
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where j = − 1
2 − iρ. Hence for the wavefunctions of restricted confluent Natanzon potentials

(2.49) we have

� ∝
(

−z

ż

)1/2

K 1
2 +j (|λ|z) (2.52)

where Kν are the modified Bessel functions of the third kind.
A simple case comes about by choosing σ2 = 0, c0 = 4 and h0 = −1. In this case

z(x) = e−x , and the potential in (2.49) simplifies to the Toda potential [14]

V (x) = g2

4
e−2x . (2.53)

3. Conclusions

In this paper we have investigated the scattering systems described by Hamiltonians for which
relation (1.8) holds. With such Hamiltonians the theory of intertwining operators allows an
explicit algebraic determination of the scattering matrix. Moreover, once the Casimir operator
of SO(2, 1) is given, equation (1.8) determines in general a family of Hamiltonians whose
scattering eigenstates are associated with the basis functions of the carrier space of the principal
series of SO(2, 1).

According to three subgroup reductions SO(2, 1) ⊃ SO(2), SO(2, 1) ⊃ SO(1, 1) and
SO(2, 1) ⊃ E(1) provided by the representation theory we have three classes of one-
dimensional scattering problems related to SO(2, 1) in the sense of equation (1.8). Each
class includes a certain set of Natanzon potentials. It is a characteristic difference between
the classes that the S-matrix for the first and third classes (related to SO(2, 1) ⊃ SO(2) and
SO(2, 1) ⊃ E(1) reductions, respectively) is a complex number of unit modules, and for the
second class (related to SO(2, 1) ⊃ SO(1, 1) reduction) it is a unitary 2× 2 matrix. The
basic reason for this is that in the principal series of SO(2, 1) the spectra of SO(2) and E(1)

generators are simple, while the SO(1, 1) generator has the multiplicity 2. We should also note
that all potentials in (2.27), (2.38) and (2.49) are repulsive and do not support bound states.
This is because only the principal series representations appear in the decomposition of the
quasiregular representation realized in the space of functions on the upper sheet of hyperboloid
SO(2, 1)/SO(2).
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Appendix. The basis functions of the principal series representations induced by (2.10)

In this appendix we will give the integral representation for the basis functions of the principal
series representations induced by (2.10). The procedure is as follows. We shall start with the
principal series representations of SO(2, 1), induced by the minimal parabolic subgroup [16]
of SO(2, 1). For such a realization of the principal series the basis functions have a particularly
simple form. Then the interrelation between two alternative realizations of the principal series
allows us to obtain the integral representation mentioned above.

The principal series representations Uρ of SO(2, 1) labelled by ρ, 0 � ρ < ∞ can
be realized in the space of infinitely differentiable functions F(ζ ) on the upper sheet of the
two-dimensional cone ζ 2

0 − ζ 2
1 − ζ 2

2 = 0, ζ0 > 0, homogeneous of degree j = − 1
2 − iρ

F(aζ ) = ajF (ζ ) a > 0. (A.1)
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The representation Uρ is defined by

Uρ(g)F (ζ ) = F(ζg). (A.2)

It is worth mentioning that the homogeneous functions on the cone are uniquely determined
by their values on any contour � intersecting each generator at one point. Hence, Uρ can be
realized in spaces of functions on these contours (see appendix of [15] ). The interrelation
between this representation and the principal series representation induced by (2.10) is given
by the integral transform [20]

f̌ (ξ) =
∫

�

[ξ, n]−1−j F (n) dn ≡ (IF )(ξ) (A.3)

where [·, ·] is given by (2.1) and � is an arbitrary contour on the cone which intersects every
generator once; and dn is a quasi-invariant measure on �. Moreover the following intertwining
relation is held

IU = Ť I. (A.4)

Thus, equation (A.3) allows us to obtain the integral representation for the basis functions of
the principal series representations induced by (2.10).

1. � = �S , where �S is the section of the cone by plane ζ0 = 1. Let us introduce the
spherical coordinate systems on the cone

ζ = ωn n = (1, cos θ, sin θ) (A.5)

where 0 � ω < ∞, 0 � θ < 2π . It follows from (A.1) that the function F(ζ ) is uniquely
determined by its values on the circle �S = {n = (1, cos θ, sin θ)|0 � θ < 2π}.

Uρ(g)F (n) = (ωg)
jF (ng) (A.6)

where ωg and ng are determined from parametrization (A.5) of ng, i.e. from ng = ωgng .
The Casimir operator of the representation (A.2) is identically a multiple of the unit
C ≡ −ρ2 − 1

4 . The relevant basis on the carrier space of representation (A.6) is given by
the reduction SO(2, 1) ⊃ SO(2). Since J0 = −i ∂

∂θ
, the corresponding basis functions are

F (1)
m (n) = eimθ . Then, due to (A.3), we come to the following integral representation for

the basis functions of the principal series representations induced by (2.10)

f̌ (1)
m (ξ) =

∫ 2π

0
(ξ0 − ξ1 cos θ − ξ2 sin θ)−1−j eimθ dθ (A.7)

where the upper index 1 refers to the SO(2, 1) ⊃ SO(2) reduction. It is not difficult to
see that the basis functions f̌ (1)

m are indeed the eigenfunctions of the set of commuting
operators Č and J̌ 0

Čf̌ (1)
m = j (j + 1)f̌ (1)

m j = − 1
2 − iρ (A.8)

J̌ 0f̌
(1)
m = mf̌ (1)

m (A.9)

where Č is the Casimir operator of Ť , while J̌ 0 is its infinitesimal operator corresponding
to SO(2)

Č = ∂2

∂ξ2
1

+
∂2

∂ξ2
2

+ (� + 1)� � = ξ1
∂

∂ξ1
+ ξ2

∂

∂ξ2
(A.10)

J̌ 0 = i

(
ξ2

∂

∂ξ1
− ξ1

∂

∂ξ2

)
. (A.11)
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2. � = �H , where �H are the sections of the cone by planes ζ2 = ±1. According to this,
we introduce the hyperbolic coordinate system on the cone

ζ = ωnτ nτ = (cosh α, sinh α, τ) (A.12)

where 0 � ω < ∞, −∞ < α < ∞ and τ ≡ sign ζ2. By arguments very similar to those
used to obtain (A.7) we can show that

f̌ (2)
ντ (ξ) =

∫ ∞

−∞
(ξ0 cosh α − ξ1 sinh α − τξ2)

−1−j e−iνα dα (A.13)

where the upper index 2 refers to the SO(2, 1) ⊃ SO(1, 1) reduction. Furthermore,

Čf̌ (2)
ντ = j (j + 1)f̌ (2)

ντ (A.14)

J̌ 1f̌
(2)
ντ = νf̌ (2)

ντ (A.15)

where J̌ 1 = iξ0
∂

∂ξ1
is the infinitesimal operator of Ť corresponding to the pure Lorentz

transformation g1 (t).
3. � = �P , where �P is the section of the cone by the plane ζ0 + ζ1 = 1. We now introduce

the parabolic (or horispherical) coordinate system on the cone

ζ = ωn n =
(

1 + t2

2
,

1 − t2

2
, t

)
(A.16)

where 0 � ω < ∞, −∞ < t < ∞. Then it follows from (A.3) that

f̌
(3)
λ (ξ) =

∫ ∞

−∞

(
1 + t2

2
ξ0 − 1 − t2

2
ξ1 − tξ2

)−1−j

eiλt dt (A.17)

where n is given by (A.16) and the upper index 3 refers to the SO(2, 1) ⊃ E(1) reduction.
We note that

Čf̌
(3)
λ = j (j + 1)f̌

(3)
λ (A.18)

Ň f̌
(3)
λ = λf̌

(3)
λ (A.19)

where Ň = i
(
ξ2

∂
∂ξ1

− ξ+
∂

∂ξ2

)
, ξ+ = ξ0 + ξ1.
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